Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6689): 1318-1325, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513014

RESUMO

Plants are constantly exposed to volatile organic compounds (VOCs) that are released during plant-plant communication, within-plant self-signaling, and plant-microbe interactions. Therefore, understanding VOC perception and downstream signaling is vital for unraveling the mechanisms behind information exchange in plants, which remain largely unexplored. Using the hormone-like function of volatile terpenoids in reproductive organ development as a system with a visual marker for communication, we demonstrate that a petunia karrikin-insensitive receptor, PhKAI2ia, stereospecifically perceives the (-)-germacrene D signal, triggering a KAI2-mediated signaling cascade and affecting plant fitness. This study uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s).


Assuntos
Furanos , Hidrolases , Petunia , Piranos , Compostos Orgânicos Voláteis , Hidrolases/genética , Hidrolases/metabolismo , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismo , Petunia/fisiologia , Furanos/metabolismo , Piranos/metabolismo , Sesquiterpenos de Germacrano/metabolismo
2.
Plant Physiol Biochem ; 205: 108188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979574

RESUMO

Drought stress is a common abiotic factor and restricts plant growth and development. Exploring maize stress-related genes and their regulatory mechanisms is crucial for ensuring agricultural productivity and food security. The BRI1-EMS1 suppressor (BES1)/brassinazole-resistant 1 (BZR1) transcription factors (TFs) play important roles in plant growth, development, and stress response. However, maize ZmBES1/BZR1s are rarely reported. In the present study, the ZmBES1/BZR1-1 gene was cloned from maize B73 and functionally characterized in transgenic Arabidopsis and rice in drought stress response. The ZmBES1/BZR1-1 protein possessed a conserved bHLH domain characterized by BES1/BZR1 TFs, localized in the nucleus, and showed transcription activation activity. The expression of ZmBES1/BZR1-1 exhibited no tissue specificity but drought-inhibitory expression in maize. Under drought stress, overexpression of ZmBES1/BZR1-1 resulted in the enhancement of drought sensitivity of transgenic Arabidopsis and rice with a lower survival rate, reactive oxygen species (ROS) level and relative water content (RWC) and a higher stomatal aperture and relative electrolyte leakage (REL). The RNA-seq results showed that 56 differentially expressed genes (DEGs) were regulated by ZmBES1/BZR1-1 by binding to E-box elements in their promoters. The GO analysis showed that the DEGs were significantly annotated with response to oxidative stress and oxygen level. The study suggests that the ZmBES1/BZR1-1 gene negatively regulates drought stress, which provides insights into further underlying molecular mechanisms in the drought stress response mediated by BZR1/BES1s.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Resistência à Seca , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/genética
3.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446801

RESUMO

Trehalose is a reducing disaccharide, acting as a protectant against various environmental stresses in numerous organisms. In plants, trehalose-6-phosphate synthase (TPS) plays a crucial role in trehalose biosynthesis. Anoectochilus roxburghii (Wall.) Lindl. is a prominent species of the Anoectochilus genus, widely utilized as a health food. However, the functional analysis of TPS in this species has been limited. In this study, TPS genes were cloned from A. roxburghii. The ArTPS gene, with an open reading frame spanning 2850 bp, encodes 950 amino acids. Comparative and bioinformatics analysis revealed that the homology was presented between the ArTPS protein and TPSs from other plant species. The ORF sequence was utilized to construct a prokaryotic expression vector, Pet28a-ArTPS, which was then transformed into Escherichia coli. The resulting transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mmol/L NaCl. Quantitative RT-PCR analysis demonstrated that the expression of ArTPS genes responded to NaCl stress. The accumulation of G6P was upregulated, whereas the content of T6P exhibited an opposite expression trend. The glycometabolism products, including trehalose, exhibited notable changes under NaCl stress, although their variations may differ in response to stimulation. The content of kinsenoside, a characteristic product of A. roxburghii, was significantly upregulated under NaCl stress. These results suggest that the ArTPS genes function in response to NaCl stimulation and play a key role in polysaccharide and glycoside metabolism in Anoectochilus. This study provides new insights into the engineering modification of the health food A. roxburghii to enhance the medicinal activity of its ingredients.


Assuntos
Tolerância ao Sal , Trealose , Tolerância ao Sal/genética , Cloreto de Sódio , Glucosiltransferases/genética , Glucosiltransferases/metabolismo
4.
J Struct Biol ; 214(3): 107885, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961473

RESUMO

Plant ß-amylase (BAM) proteins play an essential role in growth, development, stress response, and hormone regulation. Despite their typical (ß/α)8 barrel structure as active catalysts in starch breakdown, catalytically inactive BAMs are implicated in diverse yet elusive functions in plants. The noncatalytic BAM7/8 contain N-terminal BZR1 domains and were shown to be involved in the regulation of brassinosteroid signaling and possibly serve as sensors of yet an uncharacterized metabolic signal. While the structures of several catalytically active BAMs have been reported, structural characterization of the catalytically inactive BZR1-type BAMs remain unknown. Here, we determine the crystal structure of ß-amylase domain of Zea mays BAM8/BES1/BZR1-5 and provide comprehensive insights into its noncatalytic adaptation. Using structural-guided comparison combined with biochemical analysis and molecular dynamics simulations, we revealed conformational changes in multiple distinct highly conserved regions resulting in rearrangement of the binding pocket. Altogether, this study adds a new layer of understanding to starch breakdown mechanism and elucidates the acquired adjustments of noncatalytic BZR1-type BAMs as putative regulatory domains and/or metabolic sensors in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , beta-Amilase , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/metabolismo , Plantas , Amido/metabolismo , Zea mays/metabolismo , beta-Amilase/química , beta-Amilase/metabolismo
5.
PeerJ ; 10: e13614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818361

RESUMO

Background: Anoectochilus roxburghii and Anoectochilus formosanus, belong to the Anoectochilus genus, have been used for Chinese herbal drugs as well as health food. Phenylalanine ammonia-lyase (PAL), the key enzyme in primary metabolism and phenylpropanoid metabolism, produces secondary metabolites (flavonoids) in plants, which are beneficial for the biosynthesis of phenylpropanoid metabolites. Methods: The PAL genes were cloned from A. formosanus and A. roxburghii according to our previous transcriptomic analysis. The PALs were introduced into pCAMBIA2300-35S-PAL-eGFP to generate 35S-PAL-eGFP. The constructs were further used for subcellular localization and transgenic Arabidopsis. The expression of AfPAL and ArPAL under precursor substance (L-Phe), NaCl, UV, and red-light were analyzed by real-time quantitative PCR (RT-qPCR). Results: AfPAL and ArPAL , encoding 2,148 base pairs, were cloned from A. formosanus and A. roxburghii. The subcellular localization showed that the ArPAL and AfPAL were both localized in the nucleus with GPF. Quantitative RT-PCR analysis indicated that the ArPAL and AfPAL genes function in the phenylalanine pathway as well as response to induced conditions. Overexpression of the AfPAL and ArPAL could increase flavonoids and anthocyanin content in the transgenic Arabidopsis. Discussion: The results suggest that AfPAL and ArPAL play a crucial role in the flavonoid biosynthesis in Anoectochilus. Also, our study provides new insights into the enrichment of secondary metabolites of traditional Chinese medicines A. formosanus and A. roxburghii, which can improve their medicinal active ingredients and be used for drug discovery in plants.


Assuntos
Arabidopsis , Orchidaceae , Plantas Medicinais , Fenilalanina Amônia-Liase/genética , Arabidopsis/genética , Plantas Medicinais/genética , Flavonoides , Orchidaceae/metabolismo
6.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682705

RESUMO

The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1(BZR1) transcription factors play crucial roles in plant growth, development, and stress response. However, little is known about the function of maize's BES1/BZR1s. In this study, the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were cloned from maize's inbred line, B73, and they were functionally evaluated by analyzing their expression pattern, subcellular localization, transcriptional activation activity, as well as their heterologous expression in Arabidopsis, respectively. The results of the qRT-PCR showed that the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were predominantly expressed in the root, and their expression was significantly down-regulated by drought stress. The ZmBES1/BZR1-3 and ZmBES1/BZR1-9 proteins localized in the nucleus but showed no transcriptional activation activity as a monomer. Subsequently, it was found that the heterologous expression of the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes in Arabidopsis decreased drought tolerance, respectively. The transgenic lines showed a more serious wilting phenotype, shorter root length, lower fresh weight, and higher relative electrolyte leakage (REL) and malondialdehyde (MDA) content compared to the control under drought stress. The RNA-sequencing data showed that the 70.67% and 93.27% differentially expressed genes (DEGs) were significantly down-regulated in ZmBES1/BZR1-3 and ZmBES1/BZR1-9 transgenic Arabidopsis, respectively. The DEGs of ZmBES1/BZR1-3 gene's expressing lines were mainly associated with oxidative stress response and amino acid metabolic process and enriched in phenylpropanoid biosynthesis and protein processing in the endoplasmic reticulum. But the DEGs of the ZmBES1/BZR1-9 gene's expressing lines were predominantly annotated with water deprivation, extracellular stimuli, and jasmonic acid and enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, ZmBES1/BZR1-9 increased stomatal aperture in transgenic Arabidopsis under drought stress. This study indicates that ZmBES1/BZR1-3 and ZmBES1/BZR1-9 negatively regulate drought tolerance via different pathways in transgenic Arabidopsis, and it provides insights into the underlying the function of BES1/BZR1s in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
7.
Front Plant Sci ; 13: 881055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586216

RESUMO

Zinc is an essential micronutrient for plant growth and development, and functions as a cofactor for hundreds of transcription factors and enzymes in numerous biological processes. Zinc deficiency is common abiotic stress resulting in yield loss and quality deterioration of crops, but zinc excess causes toxicity for biological systems. In plants, zinc homeostasis is tightly modulated by zinc transporters and binding compounds that uptake/release, transport, localize, and store zinc, as well as their upstream regulators. Lazarus 1 (LAZ1), a member of DUF300 protein family, functions as transmembrane organic solute transporter in vertebrates. However, the function of LAZ1 in plants is still obscure. In the present study, the ZmLAZ1-4 protein was confirmed to bind to zinc ions by bioinformatic prediction and thermal shift assay. Heterologous expression of ZmLAZ1-4 in the zinc-sensitive yeast mutant, Arabidopsis, and maize significantly facilitated the accumulation of Zn2+ in transgenic lines, respectively. The result of subcellular localization exhibited that ZmLAZ1-4 was localized on the plasma and vacuolar membrane, as well as chloroplast. Moreover, the ZmLAZ1-4 gene was negatively co-expressed with ZmBES1/BZR1-11 gene through co-expression and real-time quantitative PCR analysis. The results of yeast one-hybrid and dual-luciferase assay suggested that ZmBES1/BZR1-11 could bind to ZmLAZ1-4 promoter to inhibit its transcription. All results indicated that ZmLAZ1-4 was a novel zinc transporter on plasma and vacuolar membrane, and transported zinc under negative regulation of the ZmBES1/BZR1-11 transcription factor. The study provides insights into further underlying the mechanism of ZmLAZ1-4 regulating zinc homeostasis.

8.
Front Plant Sci ; 13: 851531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463404

RESUMO

Serine/threonine protein phosphatase 2C (PP2C) dephosphorylates proteins and plays crucial roles in plant growth, development, and stress response. In this study, we characterized a clade B member of maize PP2C family, i.e., ZmPP2C26, that negatively regulated drought tolerance by dephosphorylating ZmMAPK3 and ZmMAPK7 in maize. The ZmPP2C26 gene generated ZmPP2C26L and ZmPP2C26S isoforms through untypical alternative splicing. ZmPP2C26S lost 71 amino acids including an MAPK interaction motif and showed higher phosphatase activity than ZmPP2C26L. ZmPP2C26L directly interacted with, dephosphorylated ZmMAPK3 and ZmMAPK7, and localized in chloroplast and nucleus, but ZmPP2C26S only dephosphorylated ZmMAPK3 and localized in cytosol and nucleus. The expression of ZmPP2C26L and ZmPP2C26 was significantly inhibited by drought stress. Meanwhile, the maize zmpp2c26 mutant exhibited enhancement of drought tolerance with higher root length, root weight, chlorophyll content, and photosynthetic rate compared with wild type. However, overexpression of ZmPP2C26L and ZmPP2C26S significantly decreased drought tolerance in Arabidopsis and rice with lower root length, chlorophyll content, and photosynthetic rate. Phosphoproteomic analysis revealed that the ZmPP2C26 protein also altered phosphorylation level of proteins involved in photosynthesis. This study provides insights into understanding the mechanism of PP2C in response to abiotic stress.

9.
J Exp Bot ; 72(5): 1714-1726, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33206180

RESUMO

The BES1/BZR1 transcription factors regulate the expression of genes responsive to brassinosteroids and play pivotal roles in plant development, but their role in regulating kernel development in maize remains unclear. In this study, we found that ZmBES1/BZR1-5 positively regulates kernel size. Association analysis of candidate genes in 513 diverse maize inbred lines indicated that three SNPs related to ZmBES1/BZR1-5 were significantly associated with kernel width and whilst four SNPs were related to 100-kernel weight. Overexpression of ZmBES1/BZR1-5 in Arabidopsis and rice both significantly increased seed size and weight, and smaller kernels were produced in maize Mu transposon insertion and EMS mutants. The ZmBES1/BZR1-5 protein locates in the nucleus, contains bHLH and BAM domains, and shows no transcriptional activity as a monomer but forms a homodimer through the BAM domain. ChIP-sequencing analysis, and yeast one-hybrid and dual-luciferase assays demonstrated that the protein binds to the promoters of AP2/EREBP genes (Zm00001d010676 and Zm00001d032077) and inhibits their transcription. cDNA library screening showed that ZmBES1/BZR1-5 interacts with casein kinase II subunit ß4 (ZmCKIIß4) and ferredoxin 2 (ZmFdx2) in vitro and in vivo, respectively. Taken together, our study suggests that ZmBES1/BZR1-5 positively regulates kernel size, and provides new insights into understanding the mechanisms of kernel development in maize.


Assuntos
Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Zea mays/genética , Brassinosteroides , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/metabolismo
10.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028614

RESUMO

The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors, key components in the brassinosteroid signaling pathway, play pivotal roles in plant growth and development. However, the function of BES1/BZR1 in crops during stress response remains poorly understood. In the present study, we characterized ZmBES1/BZR1-5 from maize, which was localized to the nucleus and was responsive to abscisic acid (ABA), salt and drought stresses. Heterologous expression of ZmBES1/BZR1-5 in transgenic Arabidopsis resulted in decreased ABA sensitivity, facilitated shoot growth and root development, and enhanced salt and drought tolerance with lower malondialdehyde (MDA) content and relative electrolyte leakage (REL) under osmotic stress. The RNA sequencing (RNA-seq) analysis revealed that 84 common differentially expressed genes (DEGs) were regulated by ZmBES1/BZR1-5 in transgenic Arabidopsis. Subsequently, gene ontology and KEGG pathway enrichment analyses showed that the DEGs were enriched in response to stress, secondary metabolism and metabolic pathways. Furthermore, 30 DEGs were assigned to stress response and possessed 2-15 E-box elements in their promoters, which could be potentially recognized and bound by ZmBES1/BZR1-5. Taken together, our results reveal that the ZmBES1/BZR1-5 transcription factor positively regulates salt and drought tolerance by binding to E-box to induce the expression of downstream stress-related genes. Therefore, our study contributes to the better understanding of BES1/BZR1 function in the stress response of plants.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Resistência a Medicamentos , Pressão Osmótica , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal
11.
Physiol Mol Biol Plants ; 25(1): 277-287, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30804649

RESUMO

To avoid the unregulated overexpression of the exogenous genes, specific or inducible expression is necessary for some exogenous genes in transgenic plants. But little is known about organ- or tissue-specific promoters in maize. In the present study, the expression of a maize pentatricopeptide repeat (PPR) protein encoding gene, GRMZM2G129783, was analyzed by RNA-sequencing data and confirmed by quantitative real time PCR. The results showed that the PPR GRMZM2G129783 gene specifically expressed in vegetative organs. Consequently, a 1830 bp sequence upstream of the start codon of the promoter for GRMZM2G129783 gene was isolated from maize genome (P 1830 ). To validate whether the promoter possesses the vegetative organ-specificity, the full-length and three 5'-end deletion fragments of P 1830 of different length (1387, 437, and 146 bp) were fused with glucuronidase (GUS) gene to generate promoter::GUS constructs and transformed into tobacco. The transient expression and fluorometric GUS assay in transgenic tobacco showed that all promoter could drive the expression of the GUS gene, the - 437 to - 146 bp region possessed some crucial elements for root-specific expression, and the shortest and optimal sequence to maintain transcription activity was 146 and 437 bp in length, respectively. These results indicate that the promoter of the PPR GRMZM2G129783 gene is a vegetative organ-specific promoter and will be useful in transgenic modification of commercial crops for moderate specific expression after further evaluation in monocotyledons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...